

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON STATISTICS

High dimensional asymptotics of likelihood ratio tests in the Gaussian sequence model under convex constraints

By

Prof. Qiyang HAN Rutgers University

<u>Abstract</u>

In the Gaussian sequence model $Y = \mu + \xi$, we study the likelihood ratio test (LRT) for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \in K$, where $\mu_0 \in K$, and *K* is a closed convex set in \mathbb{R}^n . In particular, we show that under the null hypothesis, normal approximation holds for the log-likelihood ratio statistic for a general pair (μ_0, K) , in the high dimensional regime where the estimation error of the associated least squares estimator diverges in an appropriate sense. The normal approximation further leads to a precise characterization of the power behavior of the LRT in the high dimensional regime. These characterizations show that the power behavior of the LRT is in general non-uniform with respect to the Euclidean metric, and illustrate the conservative nature of existing minimax optimality and sub-optimality results for the LRT. A variety of examples, including testing in the orthant/circular cone, isotonic regression, Lasso, and testing parametric assumptions versus shape-constrained alternatives, are worked out to demonstrate the versatility of the developed theory.

This talk is based on joint work with Yandi Shen(UW, Chicago) and Bodhisattva Sen(Columbia).

Date	: 17 September 2021 (Friday)
Time	: 10:00am
Zoom Meeting	: https://hkust.zoom.us/j/94328358340
U	(Passcode: 690595)

All are Welcome!